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Constant-Cutoff Approach to Pion-Nucleon 
Scattering 

Ni l s  D a l a r s s o n  t 

Received August 14, 1995 

Pion-nucleon scattering amplitudes as well as Born amplitudes are calculated in 
a constant-cutoff approach to the canonical quantization of skyrmions, with the 
subsidiary conditions imposed on the quantum fields and their conjugate momenta 
such that all infrared singularities from the zero-frequency modes are eliminated. 
It is shown that the Born terms with recoil corrections are reproduced by the 
pion-nucleon linear and quadratic interactions. 

1. I N T R O D U C T I O N  

It was shown by Skyrme (1961, 1962) that baryons can be treated as 
solitons of a nonlinear chiral theory. The original Lagrangian of the chiral 
SU(2) ~r-model is 

= 1~ Tr O¢U O¢U + ( l . 1 )  

w h e r e  

2 
U = -~- (or + i'r-Tr) 

r =  
(1.2) 

is a unitary operator (UU ÷ = 1) and F~ is the pion-decay constant. In (1.2), 
cr = or(r) is a scalar meson field and ~ = ax(r) is the pion isotriplet. 
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The classical stability of the soliton solution to the chiral cr-model 
Lagrangian requires an additional ad hoc term, proposed by Skyrme (1961, 
1962), to be added to (1.1): 

1 
~Sk = 32e 2 Tr[U+O~U, U+OvU] 2 (1.3) 

with a dimensionless parameter e and where [A, B] = AB - BA. It was 
shown by several authors [e.g., Adkins et aL (1983); for an extensive list of 
other references see Holzwarth and Schwesinger (1986) and Nyman and 
Riska (1990)] that, after the collective quantization using the spherically 
symmetric ansatz 

U0(r) = exp[i'r.tF(r)], ~ = r/r (1.4) 

the chiral model, with both (1. t) and (1.3) included, gives good agreement 
with experiment for several important physical quantities. Thus it should be 
possible to derive the effective chiral Lagrangian, obtained as a sum of (1.1) 
and (1.3), from a more fundamental theory like QCD. On the other hand, it 
is not easy to generate a term like (1.3) and give a clear physical meaning 
to the dimensionless constant e in (1.3) using QCD. 

Mignaco and Wulck (1989) (MW) indicated the possibility of building 
a stable single-baryon (n = I) quantum state in the simple chiral theory with 
the Skyrme stabilizing term (1.3) omitted. They showed that the chiral angle 
F(r) is in fact a function of a dimensionless variable s = ½×"(O)r, where ×"(0) 
is an arbitrary dimensionless parameter intimately connected to the usual 
stability argument against the soliton solution for the nonlinear tr-model 
Lagrangian. 

Using the adiabatically rotated ansatz U(r, t) = A(t)Uo(r)A+(t), where 
U0(r) is given by (1.4), MW obtained the total energy of the nonlinear cr- 
model soliton in the form 

where 

'rr 1 E = ~ F~ ~-~-~ a+ 1 [×"(0)] 3 j(j  + 1) (1.5)  
2 (Tr/4)F2~b 

a=fi°[~s2(d~12+8sin2( l~)]  (1.6) 

b= fodS6-~sasin2(4~ ) (1.7) 

and ~;(s) is defined by 
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F(r) = F(s) = -n'rr + ¼~;(s) (1.8) 

The stable minimum of the function (1.5), with respect to the arbitrary 
dimensional scale parameters ×"(0), is 

E =  F~ ~ J(J + 1) (1.9) 

Despite the nonexistence of the stable classical soliton solution to the 
nonlinear cr-model, it is possible, after the collective coordinate quantization, 
to build a stable chiral soliton at the quantum level, provided that there is a 
solution F = F(r) which satisfies the soliton boundary conditions, i.e., F(0) 
= -n r r ,  F(oo) = 0, such that the integrals (1.6) and (1.7) exist. 

However, as pointed out by Iwasaki and Ohyama (1989), the quantum 
stabilization method in the form proposed by MW is not correct since in the 
simple cr-model the conditions F(0) = - n r r  and F(co) = 0 cannot be satisfied 
simultaneously. In other words, if the condition F(0) = --rr is satisfied, 
Iwasaki and Ohyama obtained numerically F(oo) ~ - r r /2 ,  and the chiral 
phase F = F(r) with correct boundary conditions does not exist. 

Iwasaki and Ohyama also proved analytically that both boundary condi- 
tions F(0) = -n'rr and F(oo) = 0 cannot be satisfied simultaneously. Introduc- 
ing a new variable y = l /r  into the differential equation for the chiral angle 
F = F(r), we obtain 

d2F 1 

ay 2 Y 
sin 2F (1.10) 

There are two kinds of  asymptotic solutions to equation (1.10) around the 
point y = 0, which is called a regular singular point if sin 2F ~- 2F. These 
solutions are 

mTr + cy2, m = even integer F(y) = 

m'rr [_~_~ ] 
F(y) = T + ~ cos In(cy) + ~ 

m = odd integer 

( l . l l )  

(1.12) 

where c is an arbitrary constant and cx is a constant to be chosen adequately. 
When F(0) = -n'rr  then we want to know which of these two solutions is 
approached by F(y) when y ~ 0 (r --~ oo). In order to answer that question 
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we multiply (1.10) by yZF'(y), integrate with respect to y from y to 0% and 
use F(0) = -n-rr. Thus we get 

y2F'(y) + 2y[F'(y)]Rdy = 1 - cos[2F(y)] (1.13) 

Since the left-hand side of (1.13) is always positive, the value of F(y) is 
always limited to the interval n~ - ~ < F(y) < n~ + ~r. Taking the limit 
y --~ 0, we find that (1.13) is reduced to 

f 2 y [ f ' ( y ) ]  2 dy = 1 - ( - 1 )  m (1.14) 

where we used (1.11)-(1.12). Since the left-hand side of (1.14) is strictly 
positive, we must choose an odd integer m. Thus the solution satisfying F(0) 
= - n ~  approaches (1.12) and we have F(~) ~ 0. The behavior of  the 
solution (1.11) in the asymptotic region y -~ m (r --~ 0) is investigated by 
multiplying (1.10) by F'(y), integrating from 0 to y, and using (1.11). The 
result is 

[F,(y)] 2 _ 2 sin2F(y) SoY 2 sinaF(y) y2 + y3 dy (1.15) 

From (1.15) we see that F'(y) ~ const as y --~ ~, which means that F(r) = 
llr for r --~ 0. This solution has a singularity at the origin and cannot satisfy 
the usual boundary condition F(0) = -n~r. 

In Dalarsson (1991 a,b; 1992) I suggested a method to resolve this diffi- 
culty by introducing a radial modification phase ~ = q~(r) in the ansatz (1.4), 
as follows: 

U(r) = exp[ix'roF(r) + iq0(r)], r0 = f ir  (1.16) 

Such a method provides a stable chiral quantum soliton, but the resulting 
model is an entirely noncovariant chiral model, different from the original 
chiral or-model. 

In the present paper we use the constant-cutoff limit of the cutoff quanti- 
zation method developed by Balakrishna et aL (1991; see also Jain et al., 
1989) to construct a stable chiral quantum soliton within the original chiral 
g-model. Then we apply this method to calculate the pion-nucleon scattering 
amplitudes as well as Born amplitudes, with the subsidiary conditions imposed 
on the quantum fields and their conjugate momenta such that all infrared 
singularities from the zero-frequency modes are eliminated (Ohta, 1990, 
1991a,b). It is shown that the Born terms with recoil corrections are repro- 
duced by the pion-nucleon linear and quadratic interactions. 
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The reason why the cutoff approach to the problem of the chiral quantum 
soliton works is connected to the fact that the solution F = F(r) which 
satisfies the boundary condition F(oo) = 0 is singular at r = 0. From the 
physical point of view the chiral quantum model is not applicable to the 
region about the origin, since in that region there is a quark-dominated bag 
of the soliton. 

However, as argued in Balakrishna et aL (1991), when a cutoff ~ is 
introduced, then the boundary conditions F(~) = -n'rr and F(oo) = 0 can be 
satisfied. Balakrishna et al. (1991) discussed an interesting analogy with the 
damped pendulum, showing clearly that as long as ~ > 0, there is a chiral 
phase F = F(r) satisfying the above boundary conditions. The asymptotic 
forms of such a solution are given by equation (2.2) in Batakrishna et al. 
(1991). From these asymptotic solutions we immediately see that for ~ --~ 0 
the chiral phase diverges at the lower limit. 

Different applications of the constant-cutoff approach have been dis- 
cussed in Dalarsson (1993, 1995a-c). 

2. C O N S T A N T - C U T O F F  S T A B I L I Z A T I O N  

The chiral soliton with baryon number n = 1 is given by (1.4), where 
F = F(r) is the radial chiral phase function satisfying the boundary conditions 
F(0) = --rr and F(~) = 0. 

Substituting (1.4) into (1.1), we obtain the static energy of the chiral 
baryon 

M = -~ F~ dr + 2 sin2F (2.1) 
u) t \ d r ]  

In (2. I) we avoid the singularity of  the profile function F = F(r) at the origin 
by introducing the cutoff ~(t) at the lower boundary of the space interval 
r ~ [0, oo], i.e., by working with the interval r ~ [~, oo]. The cutoff itself 
is introduced, following Balakrishna et al. (1991), as a dynamic time- 
dependent variable. 

From (2.1) we obtain the following differential equation for the profile 
function F = F(r): 

dr  r2 = sin 2F (2.2) 

with the boundary conditions F(~) = --rr and F(w) = 0, such that the correct 
soliton number is obtained. The profile function F = F[r; e(t)] now depends 
implicitly on time t through e(t). Thus in the nonlinear ~-model Lagrangian 
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L = 16 J Tr(0~U O~U +) d3x (2.3) 

we use the ans~itze 

U(r, t) = A(t)Uo(r, t)A+(t), U÷(r, t) = A(t)U~(r, t)A+(t) (2.4) 

where 

Uo(r, t) = exp{i'r, roE[r; ~(t)] } (2.5) 

The static part of the Lagrangian (2.3), i.e., 

L = -i6 Tr(VU.VU +) d3x = - M  (2.6) 

is equal to minus the energy M given by (2.1). The kinetic part of the 
Lagrangian is obtained using (2.4) with (2.5) and it is equal to 

L = ~ Tr(00U Oo U+) d3x 

= bx 2 Tr[00A OoA÷l + c[Yc(t)] z (2.7) 

where 

b = -~- F~ sin2F yZ dy, c = --~ F~ y2 y2 dy (2.8) 

with X(t) = [ E ( t ) ]  3/2 and y = r/E. On the other hand, the static energy functional 
(2.1) can be rewritten as 

w f ; [  ( d F ~ 2 + 2 s i n 2 F ] d y  (2.9) M = aA "213, a = -~ F~ yZ 
L \ay] 

Thus the total Lagrangian of the rotating soliton is given by 

L = c..lf 2 - a x  2 / 3  n t- 2bx2a~dt ~ (2.10) 

where Tr(00A OoA +) = 2a,dt ~ and c~, (v = 0, 1, 2, 3) are the collective 
coordinates defined as in Bhaduri (1988). In the limit of a time-independent 
cutoff (4 --~ 0) we can write 

H = Oa ~OL 6L ~ _ L = a x  213 + 2bx26L~& ~ = aX 213 -t- 2@X2 J(J + 1) (2.11) 

where (j2) = j ( j  + 1) is the eigenvalue of the square of the soliton laboratory 
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angular momentum. A minimum of (2.11) with respect to the parameter x 
is reached at ]"4 

ab ~-l  = ab (2.12) 
x = J (J  + 1)J ~ J(J  + 1) 

The energy obtained by substituting (2.12) into (2.11) is given by 

[ 3 a 3  It/4 
E = - f f J ( J  + 1) (2.13) 

This result is identical to the result obtained by Mignaco and Wulck, which 
is easily seen if we rescale the integrals a and b in such a way that a ---> 
(~rl4)F~a, b ---> ('rrl4)F~b and introducef~ = 2-3/2F~. However, in the present 
approach, as shown in Balakrishna et al. (1991), there is a profile function 
F = F(y )  with proper soliton boundary conditions F(1) = - 'rr and F(oo) = 
0 and the integrals a, b, and c in (2.9)-(2.10) exist and are shown in Bala- 
krishna et aL (1991) to be a = 0.78 GeV 2, b = 0.91 GeV 2, and c = 1.46 
GeV 2 for F~ = 186 MeV. 

Using (2.13), we obtain the same prediction for the mass ratio of the 
lowest states as Mignaco and Wulck (1989), which agrees rather well with 
the empirical mass ratio for the A resonance and the nucleon. Furthermore, 
using the calculated values for the integrals a and b, we obtain the nucleon 
mass M(N) = 1167 MeV, which is about 25% higher than the empirical value 
of 939 MeV. However, if we choose the pion-decay constant equal to F~ = 
150 MeV, we obtain a = 0.507 GeV 2 and b = 0.592 GeV 2, giving exact 
agreement with the empirical nucleon mass. 

Finally, it is of interest to know how large the constant cutoffs are for 
the above values of the pion-decay constant in order to check if they are in 
the physically acceptable ballpark. Using (2.12), it is easily shown that for 
the nucleons (J = 1/2) the cutoffs are equal to 

'0.22 fm for F~ = 186 MeV 
(2.14) 

= [0.27 fm for F~ = 150 MeV 

From (2.14) we see that the cutoffs are too small to agree with the size of 
the nucleon (0.72 fm), as we should expect, since the cutoffs rather indicate 
the size of the quark-dominated bag in the center of the nucleon. Thus we 
find that the cutoffs are of reasonable physical size. Since the cutoff is 
proportional to F?~ t, we see that the pion-decay constant must be less than 
57 MeV in order to obtain a cutoff which exceeds the size of the nucleon. Such 
values of pion-decay constant are not relevant to any physical phenomena. 



790 Dalarsson 

3. M A T R I X  E L E M E N T S  F O R  P I O N - N U C L E O N  SCATTERING 

3.1. Z e r o  M o d e s  a n d  Fie ld  F l u c t u a t i o n s  

The Lagrangian of the simplified Skyrme model with massive pions is 
obtained from (1.1) by adding the chiral-symmetry-breaking mass term, and 
is given by 

~£ = Tr O,U 3 ~ U  ÷ + 

Using (1.2). we may write 

2 2 m~rF~r 
Tr(U + U ÷ - 2) (3.1) 

16 

1 
,~ = ~ "#iGij'iri + At(rr) 

where 

1 
Jt/I.('tr ) = -~ O k'rr iG q 3 flr j 

and the metric G u is given by 

(3.2) 

"rr i'rr j 
Gq = Bq + (r 2 = 5,.j + tanZF FiFj (3.4) 

In the present paper, following Ohta (1990, 1991a,b), we split the pion 
isotriplet into its static part and the fluctuation 

-rri(r, t) = ~bi(r) + t~i(r, t) (3.5) 

Expanding the Lagrangian up to second-order terms in the fluctuation t~i(r, t), 
we obtain the following differential equation for normal modes ~(r ,  t) = 
~ . ( r )  exp(-ico.t): 

~f~ijl~lnj(r) = to2Gijd, ln j ( r )  (3.6) 

where we use the box normalization and normal modes are labeled by their 
asymptotic momenta k., i.e., ~. = ~(k.), and the operator 7{~j is defined by 

- + a , -  ,o ,o ,  j 

(3.7) 

Operators G o and 7~ij are now functions of the static part ~bi and its 
derivatives a,.~i only, such that ~C,-j can simultaneously be diagonatized with 

1 m~r},  M = [ d3r At(at) (3.3) 
J 
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the operator of the combined spatial and isospin rotations K = J + T which 
leave the solution (1.4) invariant. Normal modes with definite K and K3 are 
given by (Mattis and Karliner, 1985; Mattis and Peshkin, 1985; Karliner and 
Mattis, 1986) 

0~;x3't(r) = RX/(r)Y~(P)  (1 = K - 1, K, K + 1) (3.8) 

where K.t R,, (r) is the radial part and YKx}(~ ) are spherical vector harmonics. 
Normalization of the radial functions is defined by the asymptotic behavior 
and the pion plane wave is given by 

4wit • K3 ^ ~,;X3.t(r) = ----~ jl( k,,r) Y x, t(r ) (3.9) 

In the following we will simplify notation by using k instead of k,, and use 
a more convenient set of modes 

/ K \1,'2 

-- I t '  K + ,  1 ' L*U 3'~(~)I L \ ~ }  o 

K + 1 ,~ u2 
-\2-2-~] ][,U3.,,-,(,.)- 

0 ,,=//,I,U~.K(, -) 

(3.10) 

where E, M, and L modes stand for electric, magnetic, and multipole longitudi- 
nal modes, respectively. Due to the translational and rotational invariances 
of the Lagrangian (3.1), pion waves with K = 1 contain zero-frequency modes. 
Properly normalized, these modes are given in the Cartesian representation by 

~'a(L)(r) = M-lnO~dpo 

= vfi~R~°(r) E e,~,*Y'~0(~) - v~R~  2(r) E e~,*Y~'2(r) (3.11) 
m m 

a t i t  ^ ~0L"(M)(r) 12-U2iT"+o = R~l(r) ~ effYtl(r) (3.12) 
m 

where i ~  = e,,o is a matrix formed from the unit antisymmetric tensor e,,u 
and ~ is the moment of inertia of the soliton, given by 

~k,, = I d3r (iTkO)+GiT"O (3.13) 
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The explicit form of the radial functions is 

/4,rr \ 112 /' 
R~°(r) = ~--~) F.~cos 

[4zr~ In [ 
= 

. . t l 2  (4:.) 
R~l(r) = I F~ sin F 

F a f +  - -  
dr 

dF 
F 

dr 

(3.14) 2 Sinr F) 

si: 
(3.15) 

The explicit form of equation (3.6) is apparently dependent on the 
definition of the fluctuation, but following Holzwarth et al. (1990), we can 
remove this dependence by eliminating the metric G o, as follows: 

fff = G-In~fG -u2 (3.17) 

= GU2~ (3.18) 

Equation (3.6) now becomes 

fff~,(r) = co~d:n/(r) (3.19) 

and the modified zero modes are 

6~(C)(r) = G'n~,,,(L) 

= v/~/~°(r) E a* ,, ^ _ v/~/~012(r) e~'Yr2(~) e,, Yi0(r) ~ (3.20) 
m m 

6~,°~M~(r) = G " 2 ~  ,°~M) R~(r) ~ °" '~ ^ = em YI i(r) (3.21) 
m 

with the modified radial functions 

= {4~r'~':2 F (dF _____.~F) (3.22) R~°(r) ~3MJ ~ dr + 2 Sinr 

/4"n"~t/2 F (dF sin F)  
R~2(r) = ~,3M] ~kdr (3.23) 

(4~)  ''~ koCh(r) = i ~-~ F~ sin f = R~t(r) (3.24) 

From (3.14), (3.15), (3.22), and (3.23) we see that in the asymptotic 
region (r ~ m), where cos F ~ 1, the modified zero modes approach the 
original zero modes. 

(3.16) 
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3.2. Canonical Transformation and the Hamiltonian 

In order to perform the canonical coordinate quantization we now intro- 
duce the collective coordinates similar to those of (2.10), which we denote 
by p(t), or(t), and X(t). The p(t) are the barycentric coordinates of  the pion-  
nucleon system and t~(t) are the rotational coordinates (R) like those in (2.10). 
The canonical transformation of the field variables is now given by 

d~i(r, t) = Rij[ot(t)]{cbj[r - p(t)] + xj[r - p(t), t]} (3.25) 

and the canonical momentum conjugate to ×~(t) is defined by 

Hx(r - p, t) - - II~(r, t)Rb~(Ot) (3.26) 
g~(,[r - p, t] 

where 

I]b+(r, t) - ~dp0(r ' t~-~ - I]b+(r' t)Rba(a) (3.27) 

As argued in Gervais et al. (1976), there are six primary constraints between 
the collective coordinates and momenta 

ETa = Pa + I d3r lqx O~(qbb + Xb) ~ 0 (3.28) 

F R = I~ + I d3r IIxiTabc(qbc + ×~) -~ 0 (3.29) 

where P~ is the momentum conjugate to p,(t) and la is the body-fixed isospin. 
The momentum conjugate to eta(t) is defined byp~ = 05~/0a~. Introducing 
the modified fields 

;~(r, t) = G~b~(r)xb(r, t) (3.30) 

l"IaX(r, t) = I-Ix(r, t)Gg~ln(r) (3.31 ) 

we find that the constraints (3.28) and (3.29) become 

FV~ = P~ + f d3r n~ O~(~bb + Xb) ~ 0 (3.32) 

F~ = Ia + f d3r [IxiT"abc(t~c -t- Xc) ~-~ 0 (3.33) 

where 0~X = GU20~X and iT"~X = GlniT, x. For quantization we now use the 
commutation relations 

[P6, Phi = i~b, [eta, : b] = i~b (3.34) 
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In (3.28) and (3.29) as well as in (3.32) and (3.33) by wavy equality 
we indicate the weak condition since, although Far and F, R, vanish, their 
commutators with other operators do not necessarily vanish. In order to make 
these weak equalities strong, we use the Dirac formalism for quantization of 
constrained systems. Since we have added six extra collective coordinates, 
we have to impose six gauge-fixing conditions to preserve the number of 
quantum degrees of freedom. Generalizing the conditions considered in Ger- 
vais et al. (1976) from the two-dimensional to the three-dimensional case, 
we impose the subsidiary constraints 

Oar = I d3r ~'far ~ 0 (3.35) 

Q~ = I d3r ;~" f~ ~- 0 (3.36) 

where far and f~ are some arbitrary real gauge-fixing functions. With these 
functions we also define two new parameters Ix and 0 as follows: 

Ix~,,b = I d3r far, f~ (3.37) 

0~ab f d3r R = fa" fb (3.38) 

Furthermore, we note that the nonlinear constraints (3.32) and (3.33) are not 
convenient for quantization. We therefore linearize these by changing vari- 
ables from 1~ × to I1 x, such that they become 

Far = f d 3 r  x -r II  - f~ ~-- 0 (3.39) 

F R = f d3r H x" f~ ~- 0 (3.40) 

This is performed using the canonical transformation in the symmetrized form 

I'IX(r, t) 

1 [ . . . .  r(M;').V = IlX(r, t) [ ) - U~,J'b'I[(M.~,)RTc 

t 
(3.41) 
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where pS = Pa - Par and ~ = In - 1~ are the soliton momentum and body- 
fixed isospin, respectively, and 

= - f  d3r HX" 0~X (3.42) pa r 

= - - f  d3r 11 x'iTaX (3.43) /-g 

are pion momentum and body-fixed isospin, respectively. Furthermore, the 
matrix M× is defined by 

1 
M x =  ~0 0$ab  d 'r f~ ' i tax  fda r f~ ' i~P~XJ  

In order to make the weak equalities (3.32) and (3.33) strong, we replace 
the usual equal-times commutation relation for X-fields 

[~a(r, t), IIX(z, t)] = i~bg(r  - z) (3.45) 

by the following commutation relation: 

[~( r ,  t), [iX(z,/)] 

i _ _  _ _  i 
= i~a08(r - z) - --fi'~(r)f/b(z) - =f~ia(r)fi0(z) (3.46) 

Ix t l  

Thus, following Dirac's terminology, we turn second-class constraints (3.32) 
and (3.33) with (3.45) into first-class constraints with (3.46). It should be 
noted that the arbitrariness of the functions f~ and far is kept throughout the 
quantization procedure. 

The Hamiltonian of the p ion-nucleon system in terms of the fields X 
and [Ix can be written in the form 

if f H = ~ d3r I/~+(r, t)G2b l[+(r, t)]IIb+(r, t) + d3r .kt[dp(r, t)] 

= 1 1 d3r II~X(r - p' t)Rb~G;~'[R+(r - p)]RJT~(r  - p, t) 

+ f d3r At{R[+(r - p) + x(r - p, t)] } (3.47) 

Rewriting (3.47) in terms of the modified fields ~ and II  x and keeping only 
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terms up to the second order in the pion field and up to the order N~112 in 
the N~ ~ expansion, we obtain (Verschelde, 1988, 1989) 

H = H0 + HI + Hu (3.48) 

where H0 is the free-field Hamiltonian 

Ho = HCOLL + HINTR -I- HCOUP (3.49) 

with 

0 12 (3.50) HCOLL = M + ~ M  2p2 + 

0 
HtNTR = ~ (p~)2 + ~ (i~)2 

l l d3r IIX'IIX + f d3r U(yr dp) (3.51) +5 

_ I t  0 i~ 
HcouP = M2 P-p~ - ~-~ I- (3.52) 

and 

1 { 823vt 
U(y(, ~) = ~ Y(iG£ '/2 8~,,8~,, G~l'2~ 

82~ 
+ aa)'aa'x' 

82~ a~aatX4 .} (3.53) 3t- akXiG#n 112 8( akl~m)8( alf~n) 

In (3.49) HCOLL is the Hamiltonian of the collective degrees of freedom, 
HINTR is the Hamiltonian for the intrinsic pion field, and HcouP is the Hamilto- 
nian that couples the collective motion and the intrinsic pion field. 

The eigenstates of H0 are noninteracting baryon-pion states. In order 
to find these eigenstates we observe that the eigenstate of HcouL is I I 13 J3 
P), where I and J (=/) are total isospin and spin, respectively, and P is the 
total momentum. The eigenstate of H~NTR is then denoted by l q, ~), where 
q is the pion momentum and ~ is the third component of the pion body- 
fixed isospin. Since the collective variables commute with the intrinsic pion 
field, the l-baryon- l-pion states are a linear combination of I q, ~)  ® I I/3 
J3 P) such that Hcour, is diagonalized, i.e., 

ti 13 P; J J3 q) = E (I J3 - b' 1 v l J  J3) l q, l:) @ [I 13 J3 - 1: P) (3.54) 
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where p = P - q is the baryon momentum. Similarly t -baryon-2-pion states 
are obtained as 

I I /3  P; J q; J '  J~ q ' )  

= ~ (JJ~ - k 1 k l J '  J~)lq' ,  h) Q llI3 P; J~ - k q) 
k 

(3.55) 

The term HI is of the order G(N~ 1/2) and it describes the linear p ion-  
nucleon interaction 

HI =/-/~i +/-/~l 

_ l~ 0 {~,Ia3rliX.iT, 4~} 2M2 {pS, ; d3r IIX'Oadp) + "~ (3.56) 

The term HII is of the order 0(/~c) and it describes the quadratic p ion-  
nucleon interaction 

2 

d3r II x" 0ad~ + ~ d3r iTadp 

(3.57) 

. i ,  : + = 

3.3. Matr ix  E lements  and  Vertex R e n o r m a l i z a t i o n s  

Normal mode solutions for the fields ~ and 1-I x are given by 

~(r, t) = ~ '  1 [~,.,,(r)e-i~ta~,a + h.c.l (3.58) 
n,a (2tOn) 1/2 

llX(r, t) = ~ '  --iron n,, ( ~ 2  [Xn.-(r)e-'O'n'a~. ~ - h.c.] (3.59) 

The prime on the sums (3.58) and (3.59) indicates that the zero- 
frequency solutions 

1 I f~), i~ / a (M) )  = 1 l f~) (3.60) 

are omitted in the sums. The normal modes Xn therefore have the complete- 
ness property 

l L fT)(fa+ 1 _ 1 ~ '  I~#)(~,,I = I - ~f H I fR)(fR I (3.61) 
n 
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which leads to the following useful sum rules: 

~,, i (~a , l~n}12=M( 1 M )  (3.62) 

E'n I(i~at~lxn>12 = ~ ( 1 - ~ )  (3.63) 

The completeness property (3.61) also ensures the usual commutation relation 
between the a-operators, i.e., 

Jan,a, + an',a'] = 8n,,8~.~, (3.64) 

Jan,a, an',a'] = [an+a, + an',,'] = 0 (3.65) 

We now calculate the matrix element of the linear interaction Hx between 
the 1-baryon and 1-baryon-l-pion states. Using (3.54) and (3.59), we obtain 
the matrix elements of ~ and/fit in the form 

( I I 3 J 3 p l H T I I '  l~p'  + q ' ;J '  J~q')  

= ~ld'Sl3J'S~p,p'+q'( 1.13 1 J~ - J31J' J3)YIJ'3-Js(q')  

X bt" -i6Oq, 1 (~a~ [ ~la(L)> (3.66) 2M 2 ~ [p2 _ (p,)2] q--7 

(113 J3 plH~l l '  I~ p' + q'; J' J~ q') 

= ~ld'~13,r3~p,p'+q'( I J3 1 J~ - -  J31J' J~)YI./'3-j3(I)') 

0 -itOq, 1 (iir~bl~e~)) (3.67) × 2h2 ( ~ / 2  [I(I + 1) - J'(J' + 1)1 - ~  

where it should be noted that there is no sum over a. The matrix elements 
of H~ and H~ between l-baryon-1-pion states are obtained in the form 

(113 p + q; J J3 qlH~l l '  l~p' + q'; J' J~ q') 

= ~ll,~131,3~p+qp,+q ' ~L itOq --itOq, 
, , , 2M 2 (2t.oq)l/2 ( ~ 2  

X ~ ( I v  1 J3 - v l J J 3 ) ( I v  1 J~ - v lJ '  r"~l~"la(L) lOat~} J31\~q 
11 

× (0a~ I ~'~L))~" ~'Y~Lj3-~(~)YIa,3-~(~') (3.68) 
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(II3 p + q; J J3 qlH~lI '  l~p'  + q'; J' J~ q') 

0 iOJq -- iOJq, 
= ~lj,~13,r3~p+q,p,+q, 2~2 (20Jq) 1/2 (20Jq,) 1/2 

× ~ (I v 1 .]3 - -  v ] J  J3)(l v 1 J; - v I J' J;)~°(M)l il'uOp) 
Y 

3 
× (i~P~bl Xq L~(M)) ~ [~J3,J'3q'q' - eJ'3-~'~ie~3-~'q'] (3.69) 

Now we calculate the vertex renormalizations of the Hamiltonians Hn, 
HI, and H0, respectively. The contribution of the Nth-order term in the vertex 
renormalization procedure to HII, i.e., ~Ht~, is obtained as, using sum rules 
(3.62) and (3.63), 

8Ht~ m =  1 - ~  H n +  1 - H~ (3.70) 

and the renormalized Hamiltonian is given by 

HI[ )=HH + ~ 8 H t ~ = M H T  + a N:2 ~, --ff H~ 

( f  )~ 1 l lx.  = ~ d3r IlX'd,~b + ~-~ d3r iTad# (3.71) 
2M 

Similarly we obtain 

~H,=  - l +  n ~ +  - l + - 6 - H ~  (3.72) 

and the renormalized Hamiltonian becomes 

Ht o = H~ + 8H~ = ~ H~ + II !~ -0 H[~ 

= 12M {PS' f d3r llX" 0~b} + ~-~l{ls, f dar l lX . iT~dp}  (3.73) 

In a similar manner, we obtain 

gH0= -1  + ~ + -1  + ~ ( ! -  (3.74) 

and the renormalized Hamiltonian becomes 

Hg ) = Ho + ~Ho = H~)OLL + Ht~'rR + H~bup (3.75) 
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with 

1 p2 1 12 H~bLL = M + ~-~ + ~ (3.76) 

1 1 'I  nx'n× Y Htk~-R = ~-~ (p~r)2 + 2-~ (I~r)2 + 2 d3r + d3r U(~, ~b) (3.77) 

1 1 
H~bvp = - ~  P" p~ - ~ I. 17 (3.78) 

Thus we see that the explicit dependence of the Hamiltonian on the parame- 
ters ix and 0 has been removed as well as that the translational and rotational 
invariances are restored in the 1-pion-1-nucleon sector, independent of the 
choice of the gauge. 

We now calculate the matrix element of the pion-field source-function 
J,-(r, 0) = ~0~'rrj{r, 0) between one-baryon states to obtain 

I t t p, (½13 J3 I Ji(r, 0) 1½13 J3 P) 

g~uu( q z) 
--  a-iq 'rO ' ' • 1 ½ 1 3 J 3 ) i - -  (3.79) --  ~ \-~ I~ J~ l'ri~ q 2MN 

where q = p' - p and the -rrNN-vertex form factor is given by (Cohen, 1986) 

g~N,v(,q2_....__~) _ 2~r Jq  F~ r 2 d r  j l ( q r )  sin F (3.80) 
2MN 3 q 

A similar procedure gives the -rrNA-vertex form factor in the form 

3 
g.rrNa(q 2) = - ~  g~Nu(q 2) (3.81) 

4. GAUGE FIXING AND THE SCATTERING AMPLITUDES 

In the present section we fix the gauge and determine the gauge functions 
f~ andf~ in such a way that the infrared singularities are removed from the 
pion wave functions and that they approach the plane wave solutions in the 
limit tOk ---> 0, i.e., Xk,~ "-'> +k,~. By expanding f~ and f~ in terms of the K = 
1 pion wave functions 

fT = 2 'YTI~IIa(L)) fR = 2 ,.~R~$1a(M) (4.1) 
k k 

we introduce two real gauge parameters ~/~ and ~/R. In order to satisfy the 
assumed normalization conditions 
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I d3r faT" 0t, d? = M'6,,b, J d3r f~" il'b~ = ag,,b (4.2) 
f 

we must choose 7o v = , fM and 7~ = 4r~.  The examination of the infrared 
singularities arising from the zero-mode contribution in the K = 1 modes 
gives the asymptotic expression 

{ '} t2~.~L)) = i~b~.(r~) _ (t~.(L) Id~(L)) + " ~  ~T i~0t.~L)) (4.3) 

including all infrared divergencies. From (4.3) it is clear that we can eliminate 
infrared divergencies if we choose ~/[ as 

,yT = _ ~ (t~/a(r) I qb/a(L)) (4.4) 

Similarly we find that we must choose ~/~ as follows: 

,yR = __ ~ (l~/la(M)I(~/a(M)) (4.5) 

Recalling now (3.21) and (3.24), we obtain 

(~,,(M) l qb/a(M)) -- 4"rr3t2 ~ F~, f r 2 dr j,(kr) sin F (4.6) 
(3V) 'a 4 0  

Similarly we find 

(l~la(L) lqbla(L)) __ (3V) lz24'rr 3/2 ~ k  F~ f r 2 drjl(kr) sin F (4.7) 

2(3,rr) m k 2 g,,u,,v(k 2) 
(4.8) 

v@ toe 2MN 

2(6'rr) 1'2 k g~nu(~) (4.9) 
,/-9 2MN 

Using (4.8) and (4.9) together with (3.66) and (3.67), we can now 
calculate the renormalized matrix element 

(113 J3 p t H t  r)ll' I; p '  + q';  J '  J ;  q ' )  

= ~l,l'813,1'3~p.p'+q'( I J3 1 J~ - J 3 t J  ' J3)YI,J'3-y3(q') 

- i (6,r0 u2 q' g~uN(q '2) 
× {Ep.t - Ep, r} ~ o~3/,2 2MN (4.10) 

and due to (3.80), we obtain 
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where 

1 1 
Ep,i = M + "4-- p2 + ~ I(I + 1) 

2M 
(4.11) 

The matrix element (4.10) agrees with that obtained in Verschelde (1988, 
1989) by entirely different means. We now calculate elastic pion-nucleon 
scattering amplitudes at the tree Level using Ht r) and HI[ ). In order to calculate 
the contribution of Ht r) we observe that the second-order T-matrix consists 

1 (gp -- Ep+q) 2 (4.12) 
3tr" q '  ~ ' q  a~-~q tOq + Ep - Ep+q 

9 1 (G - E~+q) 2 
~S+ 'q  ' S ' q 7  5 OJq (.t)q "l- Ep - E~p+q 

of direct and crossed terms which are given by 

Fg~NN] 2 
T~R,I/2(P', q'; P, q) = L2MN j 

Fg~NN] 2 
T~tR,3/2(P', q'; P, q) = L2MN J (4.13) 

r~,toss,,,~(p', q'~ p, q) = LT~-;J L - ~ ' q  " "  ~-~ -<.,,<, + E,. - E,,_<,, 

1 (E , . -  E.~_<,,)~ ] 
+ 6S+'q S ' q '  to-]q -tOq + Ep - E~_q,] (4.14) 

rg,~NN]2[2~y .q, 1 (Ep - Ep_q,) 2 
Taoss ,,,(P', q'; P, q) = [2"M-NN] [ "q o" 2 

' " ~q  - ~ q  + Ep - Ep_ o, 

+ 3 .q, 1 ( E p -  E~_q,) 2 1 
~S+ 'q  S o~2q _ ~q ~_- ~-~ _-- -~pA_ q, j (4. t5) 

where Ep and E~ stand for Er, I/z and Ep.3/2, respectively, and we used t ql = 
I q'l to refer to the limit tOq = O~q, = 0. The pion-nucleon vertex function 
is replaced by the physical coupling constant g~NN(--m~). Next we turn to 
the contribution of HI[ ) and calculate the matrix elements (3.68) and (3.69) 
and obtain the first-order T-matrix elements rearranged in such a way as to 
display the same structure as T} z) obtained above: 

2 

rg~Nu] r _ 3  .q,  1 (Ep Eo+q) 
rl~(p', q'; p, q) = / 2 M N / l  " " " q  -'5 - C0q 

1 
+ cr 'q  o'" q' -~q (Ep - Ep_q,) 

, ] 
- 6S+.q S. q' to-~q (Ep - E~_q,) (4.16) 
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2 
Fg.,,,,,,1 F_ 2 . . q '  1 (E,,-Ep_q,) 

TS~(p', q ' ;  p, q) = L q or to-~ 

3 1 
- ~ S+-q S - q '  to--~ (Ep - Eap_q,) 

9 
S+'q  ' S -q  1 (Ep - Epa+q)J (4.17) 

2 ,,,~ 
where we have used I pl = I p ' l  following from I ql = I q ' l  and energy 
conservation. The T-matrix elements (4.16) and (4.17) agree with the zero- 
mode part of  the background amplitude, i.e., the (~(APc) part of the Born terms 
(Kawarabayashi and Ohta, 1989). This is what we might expect since the 
~(APc) term Hn appears due to the present choice of  the canonical transforma- 
tion, which eliminates the zero-mode term in the background scattering. 
Summing up all the terms above, we obtain 

[ lzr q' 
, g~NN 3 Or- o ' ' q  _ or 'q  o ' ' q '  

T,/2(p, q ' ;  p, q) = L2MN j L ~ + E, - Ep+q -O.)q -~ Ep - Ep_q, 

+ 6 -O3q Jr- Up - EAp_q ,] (4.18) 

r q, , g~NN 2 -- Or" q Or 
T3/2(p , q';  p, q) = [2MuJ -~oq + E o - Ep_q, 

3 S÷ .q  S ' q '  + -  
2 -OJq + Ep - E~-q, 

9 S+-q ' S . q  ] + - - -  ~a .j (4.19) 
2 toq + Ep - E~+q 

Substituting now g-,Na defined by (3.81) and rewriting the isospin projec- 
tion operators Pt in terms of Pauli matrices and isospin transition operators, 
we can rearrange the scattering amplitude 

T = ~ PtTI (4.20) 

in the familiar form of the Born terms 

(jl T(p', q ' ;  p, q)ti> 

gwNN o r ' q _ o r ' q  "rsxi + Or'q Or'q'  

L 2Muj L~q + Ee - Ep+q -~q + ~ -- -E-pp-q, 

r,=,,,,,17s+.q, s.q S+.qS-q' T+~ ] 
+ L2M,,,i L<,.,<, + E,, - E;,+<,," + -<.,,<, 7 ~ :-: 7L-<,,J (4.21) 
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The results obtained so far agree with those obtained using the complete 
Skyrme model or conventional methods. The specific feature of the constant- 
cutoff approach is the implicit dependence of the scattering amplitudes on 
the constant cutoff e through g~Nu(~) = ge 3, g~Na(e) = (3/x/~)ge 3, M = ae, 
and l)  = be  3. The constant cutoff e itself is obtained by optimizing 
H~OLL. Thus, neglecting the pion-mass-term contribution proportional to 
m2e 2, being typically of the order 10 -2 of the total soliton mass in the low- 
energy region of interest, we obtain the constant cutoff 

e = + p4 + ~-b I (4.22) 

In the limit P + O, we see that it agrees with the result (2.12). Using (4.22) 
in (4.11), we obtain 

1 pz 1 
Epj = ae + ~ + ~e 3 I(I + 1) (4.23) 

where a = 0.78 GeV z and b = 0.91 GeV 2 for F~ = 186 MeV, and the 
integral g above is obtained from (3.80) in the obvious way. 

5. CONCLUSIONS 

We have shown how to use the Skyrme model for the calculation of the 
pion-nucleon interaction matrix elements and scattering amplitudes without 
the use of the Skyrme stabilizing term, which is proportional to e -z, which 
makes the practical calculations more complicated and requires some low- 
energy approximations which otherwise are not needed to obtain the correct 
Born terms for the scattering amplitude. 

For such a simple model with only one arbitrary dimensional constant 
F~ we have shown that a heuristic approach to the choice of the subsidiary 
gauge-fixing conditions provides us with a theory with all the divergences 
removed and the translational and rotational invariances (although apparently 
violated at first) preserved. In the present approach the quadratic interaction 
HH turns out to be the dominant one, although it is zero in the conventional 
gauge. Furthermore, we reproduce the Born terms using tree diagrams calcu- 
lated from the renormalized HI and Hn. The use of the present form of the 
Hamiltonian is not limited to the tree diagrams and low energies and it is 
possible for any higher order diagrams. 
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